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A series of two-dimensional transient numerical simulations is presented for the problem 
of double diffusion in a horizontal fluid layer linearly stratified in a stable manner with a 
salt gradient, and heated from below. For the numerical simulations the complete form of 
the governing equations, subject to the usual Boussinesq approximation, is utilized. A 
constant heat flux condition is imposed at the bottom warm wall of the system that 
generates a single well-mixed f low region which grows with time. The growth of the 
bottom region and the increase of the local and average bottom wall temperature are 
investigated. Furthermore, results are presented that aim to improve our understanding on 
the effect of the geometric aspect ratio of the system (H/L) as well as the effect of the 
ratio of the thermal to the solutal Rayleigh number (stability ratio, x=Ra/Ra,) on the 
evolving temperature, concentration and f low fields. Overall, the trends identified by earlier 
studies on double diffusion in a horizontal fluid layer are observed and a wealth of new 
information is reported. 
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I n t r o d u c t i o n  

Double diffusive convection is a topic of current interest to 
many researchers in the area of heat transfer and fluid mechanics. 
The reason for this interest stems from the numerous engineering 
applications of double diffusive convection. To this end, the 
necessity for a better understanding of oceanographic phenom- 
ena triggered the initiation of fundamental studies in the area 
of double diffusion about two decades ago.l-4 Later, numerous 
studies were motivated by the need to predict and improve the 
performance of solar ponds s-7 as solar engineering reached 
maturity and became a distinct subfield in heat transfer. More 
recently, attempts are being made to determine the effect of 
double and multicomponent diffusion in crystal growth, coating, 
and casting processes, s'9 

Despite the research efforts of the past, numerous questions 
pertinent to the phenomenon of double diffusion still remain 
unanswered. With reference to the problem of interest, namely, 
a horizontal fluid layer linearly stratified in a stable manner 
(with the help of a species solution) and heated from below, 
the theoretical modeling existing up to date needs considerable 
improvement. For  example, for the situation in which the 
magnitude of the applied bottom heat flux is relatively low, 
such as in solar ponds, it is observed that a single, warm, 
well-mixed region forms near the bottom. This region is 
separated from the overlaying fluid by a boundary layer (Figure 
l(a)). Most of the current models (Refs. 10 and 1! and 
references therein) used for the prediction of the behavior of 
the above described phenomenon are rather crude and focus 
on the gross system behavior. To elaborate, all the existing 
models are one-dimensional, they rely on the input of empirical 
correlations and constants and they offer little information 
on the flow structure in the system. Furthermore, even the 
mechanism responsible for the transfer of energy and species 
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across the boundary layer, essential for continuous growth of 
the mixed layer, is not well understood and is still under 
debate. ~ 2 

The purpose of the present study is to present a theoretical 
(numerical) investigation free from the above shortcomings. 
The full unsimplified form of the governing equations is used 
to predict the two-dimensional transient behavior of a mixture 
of a fluid and a chemical species whose initial density distri- 
bution decreases linearly as we move away from the bottom 
surface, when the layer is subjected to sudden heating at the 
bottom surface. The developing temperature, flow and concen- 
tration fields are determined and several important findings 
improving our fundamental understanding of the problem are 
reported. 

In a recent study, Ungan and Bergman t3 considered a 
problem similar to the one in this paper. However, they used 
"symmetry" and numerically solved "half" of the problem. In 
stability problems like the present, the use of symmetry is very 
questionable. The transient evolution of the phenomenon 
depends on the initial "perturbation" imposed on the system. 
Unicellular flow or flow with an odd number of cells is possible 
in the transient region. Imposing symmetry does not allow for 
the above-mentioned flow structures and the related temperature 
and concentration fields. Multiple steady-states have also been 
observed, depending on different initial perturbations of the 
flow field, x4-t7 

M a t h e m a t i c a l  f o r m u l a t i o n  

The system of interest in the present study is shown schematically 
in Figure l(b). Two horizontal solid walls bound from above 
and from below a mixture of a fluid and a chemical species 
(such as water and a salt), the density of which decreases linearly 
as the distance from the bottom wall increases. The two side 
walls of the system are also solid. Initially, the fluid is isothermal 
and at rest. Suddenly, a constant heat flux is applied at the 
bottom wall and starts warming up the system. The remaining 
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three walls are assumed insulated. Because of the scenario 
described above, heat, species, and fluid transport are initiated 
in the system. The equations governing this transport (con- 
tinuity, momentum, energy, and species conservation with the 
Dufour and Soret effects ignored) are 

V-a ,  = 0  (1) 

~u,  1 
- -  + u , .  Vu, = - - -  VP, + yV2U, 
t~t, Po 

- g r l  - fl( T , -  To) + flc(C ,-Co)] (2) 

t~T, + u , .VT ,  = ctV2 T, (3) 
tgt, 

t3C, 
- - - t -  U," VC,  = DVEC, (4) 
dt,  

In the above equations u,  is the velocity vector (u, =ui+ vj), 
P ,  the pressure, T, the temperature, C,  the species concen- 
tration, t ,  the time, p the fluid density, v the kinematic viscosity, 
g the gravitational acceleration vector, and ct and D the thermal 
and mass diffusivities of the solution respectively. Subscript * 
denotes a dimensional quantity and subscript 0 denotes the 
initial reference state. In accordance with the usual Boussinesq 
approximation, the fluid density and thermophysical properties 
are assumed to be constant everywhere except in the buoyancy 
force term of the momentum equation (Equation 2) where the 
density follows the linear state equation 

p = pot1 - fl(T, - To) + tic(C, - Co)] (5) 

Quantities fl and tic are the thermal and concentration 

N o t a t i o n  

% Specific heat at constant pressure 
C Concentration 
D Mass diffusivity 
f Dummy variable 
# Gravitational acceleration 
H Height of fluid layer 
k Thermal conductivity of the fluid 
L Horizontal length of the fluid layer 
Le Lewis number, ¢t/D 
m Number of horizontal grid lines 
n Number of vertical grid lines 
P Pressure 
Pr Prandtl number, v/ct 
q Heat transfer rate per unit area 
Ra Thermal Rayleigh number, 9flqH4/kotv 

Ra t Solutal Rayleigh number, 9flc(d C~*) H'/ctv 
\ ay,/o 

t Time 
T Temperature 
u Horizontal velocity component 
v Vertical velocity component 
x Horizontal Cartesian coordinate 
y Vertical Cartesian coordinate 

~t Thermal diffusivity, k/p% 
fl Coefficient of thermal expansion 
tic Coefficient of concentration expansion 
&l Mixed layer height, Figure la  
&2 Boundary layer height, Figure la  
# Viscosity 
v Kinematic viscosity, #/p 
p Fluid density 
co Vorticity 
Z Ratio of thermal Rayleigh number to the solutal 

Rayleigh number, Ra/Ra, 
q~ Stream function 

Subscripts 
i, j Nodal location 
b Bottom wall 
b o Bottom wall at initial condition 
T Top wall 
T O Top wall at initial condition 
0 Initial reference condition 
* Dimensional quantity 

Superscripts 
r Iteration number 

Denoting an average quantity over x 
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expansion coefficients 

f l = - - -  ~ (6) 
~0 P,C 

fl=--- ~ (7) 
DO P,T 

As discussed earlier in this section, the boundary conditions of 
the problem represent the fact that all walls of the system are 
solidi generate no species, and all are adiabatic except for the 
bottom wall at which a constant heat flux is applied. With 
respect to the coordinate system shown in Figure l(b) these 
boundary conditions read 

- k  OT* aC* =0;  at y , = 0  
u ,  = v ,  = O, q = O y , '  ay, 

u , = v , = O ,  OT*-OC*=o; at y , = H  (8) 
Oy, Oy, 

u , = v , = O ,  OT*-OC*=o; at x ,=O,  L 
ax ,  ax, 

The initial conditions necessary to complete the mathematical 
formulation a r e  

t = 0 :  u , = v , = 0 ,  T,=To, C ,=(dC*)  y , + C ,  (9) 
\ dy, /o  bO 

everywhere in the system. 
Before attempting to solve the system of Equations 1-4 and 

8-9 it is convenient to cast these equations in dimensionless 
form and to write them with respect to the Cartesian system 
of Figure l(b). The dimensionless parameters necessary to 
perform this task are defined as 

x = x,/H, y = y,/H, u = u,/(a/H), v = v,/(o(H) 
(10) 

- ( C ,  - C ~ o )  

T= (T, -- To)/(qH/k), C - , t = t,/(H2/a) 

\ dy /o  

In addition, the dimensionless streamfunction W, and vorticity, 
co, are introduced 

Oq~ aq j 
u = - - ,  v= - - -  o9= v2w (11) 

Oy Ox' 

Note that by definition, the streamfunction satisfies the con- 
tinuity equation. Furthermore, the two momentum equations 
can be combined to eliminate the pressure gradient and create 
a unique vorticity equation. After the above manipulations, the 
dimensionless governing equations and boundary and initial 
conditions read 

&o a a 2 aT aC 
- : - + - -  (uw)+-- (vo~)=PrV w+RaPr - -  + RasPr - -  (12) 
Ot ax c3y ax Ox 

OT a 0 
~+-~x  (uT)+~y (vT)=V2T (13) 

aC O 
-fit +Ox (uC) + 0  ( v C ) = 1  V2 C (14) 

Oy Le 

for t > 0  

1 aT aC 
- - - = 0  at y = 0  qJ=O, =-~y'  ay 

aT aC 
~P=0, - - = - - = 0  at y = l  (15) 

ay ay 

aT aC 
~P=0, - 0 at x = 0 ,  1 

Ox ax 

Initially (t =0) 

~P = co = 0, T=0,  C =  1 - y ,  everywhere (16) 

The nondimensionalization process yielded the appearance 
of four dimensionless groups 

9flqH 4 
Ra = - -  (17) 

ketv 

Ras - (18) 
NV 

Pr = v/e (19) 

Le = e/D (20) 

Ra is the thermal Rayleigh number appropriate for the constant 
heat flux boundary condition and Ra s is the solutal Rayleigh 
number based on the initial concentration gradient. It is worth 
noting that the thermal Rayleigh number is proportional to 
the strength of the destabilizing bottom heat flux whereas 
the solutal Rayleigh number represents the opposing initial 
stabilizing concentration gradient. The relative influence of the 
two is often represented by the stability ratio 

x=Ra/Ras  (21) 

The remaining two dimensionless groups are the Prandtl 
number and Lewis number, respectively. 

N u m e r i c a l  s o l u t i o n  

The problem modeled mathematically in the previous section 
was solved numerically using a finite difference method. The 
equations were discretized with the help of the control volume 
formulation, ts The heat and mass fluxes across the boundaries 
of each control volume were calculated via the power law 
scheme) 9 The resulting system of simultaneous algebraic 
equations was solved by using an iterative point by point 
method. Relation was necessary to aid convergence of the 
vorticity equation. A typical value of the underrelaxation 
parameter was 0.4 for the vorticity equation. No relaxation 
was needed for the energy and species equations. 

Because of the nature of the boundary conditions, no 
steady-state exists and the transient behavior of the system is 
sought. The solution progressed as follows: starting from the 
initial conditions, the vorticity, energy and species equations 
were solved simultaneously for the first time step. Next, the 
time was advanced and the solution for the second time step 
was obtained starting with the converged solution of the first 
time step. This process was repeated until a desired time after 
which the calculations were terminated. The time step used for 
most of the numerical simulations was At ~ 10-5. The following 
convergence criterion was satisfied at each time step 

I f [~  1 --fT,~l 
id <¢ (22) 

r + l  If,.1 I 
i j  

where f stands for co, W, T or C, r is the iteration number, and 
is a prescribed error (~ = 10- 5 for the majority of the runs). 

32 Int. J. Heat and Fluid Flow, Vol. 11, No. 1, March 1990 



Transient double diffusion in a stably stratified f luid layer heated from below: M. Kazmierczak and D. Poulikakos 

The grid size used for the computations was obtained based 
on a trial and error procedure. After some experimentation 
with uniform grids it became clear that a nonuniform grid was 
necessary to yield reasonable computational accuracy within 
manageable computer time. The nonuniform grid fineness 
shown in Figure l(c) was used in most of the runs. For  the 
case of a square layer (H/L= 1) this grid consists of m=38 
horizontal grid lines and n=  36 vertical grid lines. Note that 
the bottom of the layer is populated rather densely with grid 
points relative to the top of the layer. This reflects the fact that 
during the time domain investigated in this study, most of the 
flow, heat, and species transport occurred in the vicinity of the 
bottom wall. For  the case H/L=0 .5  the number of the vertical 
grid lines was doubled. The chosen grid performed very well 
and resulted in both accuracy and savings in computational 
time. Increasing the grid fineness caused no discernible changes 
in the results. It is worth stressing that savings in computational 
time are important in the present study because the solution 
of the present problem requires large amounts of computational 
time, of the order of hours for a typical run on an IBM 3081 
computer. 

An important issue related to the numerical procedure is that 
of the initial conditions. As stated clearly by previous investi- 
gators of natural convection problems, ~ 7  using uniform 
conditions in the horizontal direction of the type reported in 
Equation 15 to initiate the solution yields no flow in the system. 
Flow may ensue after a large time because of artificial non- 
uniformities caused by truncation errors. In the present double 
diffusion problem, initiation of the flow by truncation errors 
requires unrealistically large time because of the additional 
resistance to flow imposed by the species concentration gradient 
in the system. Therefore, the system needs to be perturbed (at 
least at early times), so that a sustainable flow field exists in 
the system and triggers the convection phenomenon. In natural 
convection problems (in the absence of the species diffusion in 
the system) several approaches have been reported in the 
literature to initiate flow in a horizontal layer heated from 
below. Ozoe et al.,~4 in their study of three-dimensional natural 
convection in a cube heated from below, used two hot and two 
cold spots located inside the system to initiate the flow. They 
found that the location of the spots dictated the orientation of 
the resulting flow cell. Moya et al., ~5 in their study of natural 
convection in a horizontal fluid-saturated porous layer heated 
from below and cooled from above, assumed that a flow pattern 
existed in the system initially. They obtained this initial flow 
by solving the same problem but at a small angle of inclination. 
The flow pattern so obtained was used as the initial "guess" for 
the flow field inside a perfectly horizontal layer. A similar 
approach was adopted by Vasseur et al. 16 Vasseur et al. 17 used 
a single flow cell, obtained via the assumption that a parallel 
flow structure exists in the core region, to trigger flow inside a 
horizontal layer heated from below and cooled from above with 
constant heat fluxes. In the present study we followed a 
procedure involving slight tilting at the system, similar but yet 
different to what was discussed above. At time t = 0 the layer 
was slightly tilted from its perfectly horizontal position by one 
half of one degree for the numerical runs with aspect ratio 
H/L = 1/2 and by one degree for the numerical runs of aspect 
ratio H/L = 1. At very early times, after a sustainable flow was 
initiated near the bottom wall, the tilt angle was set equal to 
zero and the enclosure was returned to its perfectly horizontal 
position for the remainder of the numerical simulation. The 
above method yields realistic flow, temperature, and concen- 
tration fields and has minimum impact on the subsequent 
development of the phenomenon. In addition, it is easily 
duplicable both numerically and experimentally. 

Extensive tests on the accuracy of the numerical code are 

reported in Ref. 20 and, for brevity, are not repeated here. To 
exemplify, however, the present numerical code was used to 
solve the problem of transient natural convection in a square 
enclosure with one vertical wall hot and the other cold. The 
two horizontal walls are adiabatic. The results were compared 
to those of Patterson and Imberger. 21 The streamline and 
isotherm patterns obtained with our code were practically 
identical to those of Patterson and Imberger. 21 For comparable 
grids, our code also predicted the Nusselt number reported by 
Patterson and Imberger 21 within 0.2%. 

R e s u l t s  a n d  d i s c u s s i o n  

The numerical simulations were carried out in a systematic way 
such that the effect of the major parameters of the transient 
double diffusion phenomenon is documented. These parameters 
are the stability ratio, X and the geometric aspect ratio of the 
layer, H/L. Because of the large amounts of computational time 
each numerical simulation required, care was exercised to 
obtain only the necessary number of numerical simulations that 
illustrate the physics of the problem. The additional two 
parameters of the problem, namely, the Prandtl number and 
the Lewis number, were held fixed throughout this study. 

Pr = 7, Le = 100 (23) 

These values are representative of water-salt mixtures. A 
summary of all the numerical simulations is shown in Table 1. 
Note that the values of Ra and Ra s used in this study 
are representative of laboratory experiments. However, the 
numerical simulations last long enough for our results to be 
representative of double diffusion in solar ponds. Taking into 
account the fact that the numerical simulations are terminated 
at t=0.015, one can easily estimate through Equation 10 that, 
for a layer of height H = lm or the corresponding, dimensional 
time is t . ~ 3 0 h r  which, in an order of magnitude sense, 
corresponds to time scales observed in solar ponds. 

Figures 2-4 report results for the flow, temperature, and 
species concentration fields for Z = 3 (Ra = 3 x 109, Ras = 109) 
and H/L=0 .5  (Table 1). In this case, flow first appeared at 
t ~  10 -3 and by t ~  1.5 x 10 -3 there is enough flow to cover the 
entire bottom surface. At this time, the initial perturbation to 
the system was removed (the one half of one degree tilt angle 
was set equal to zero and the system was repositioned to its 
perfectly horizontal position). 

Figures 2(a), 3(a), and 4(a) show the predicted flow, temper- 
ature, and concentration fields at t = 1.75 x 10- 3 when a well- 
mixed bottom region becomes clearly evident. The flow field 
(Figure 2(a)) consists of a row of cells located at the very bottom 
with adjacent cells flowing in opposite directions. No discernible 
flow occurs above, in the "stable diffusive region" where the 
heating effect of the bottom wall is hardly felt (Figure 3(a)). 
From the concentration field (Figure 4(a)) it is obvious that 
the flow has caused thorough mixing of the solution at the 
bottom whereas the concentration gradient above remains 
unchanged. As time progresses, the mixed layer height increases. 
The predicted contours at t =4.25 x 10 -3 are shown in Figures 
2(b), 3(b), and 4(b). Note that the number of cells decreases as 

Table 1 Summary of numerical simulations 

Ra Ra= X Pr Le H/L Grid (m × n) 

3 x 1 0 9  l x 1 0  g 3 7 100 0.5 3 7 x 6 5  
3 x 1 0 9  l x 1 0 9  3 7 100 1 3 7 x 3 5  
3 x 1 0  ~ 3 x 1 0 8  10 7 100 1 3 7 x 3 5  
3 x 1 0 8  l x 1 0  e 3 7 100 1 3 7 x 3 5  

Int. J. Heat and Fluid Flow, Vol. 11, No. 1, March 1990 33 



Transient double diffusion in a stably stratified fluid layer heated from below." M. Kazmierczak and D. Poulikakos 

-10 -10 -10 

20 20 20 

-10 -10 -10 -10 ~} ~ 

(a) 

,Tr-,o 

(b) 

-'°7 ,. -'°7 ,9 -'°7 - , °  7 

(d) 
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Figure 3 Isotherms for Ra= 3 x 109, Ra,= 109, ;(=3, H/L =0.5 at characteristic times. Contours are spaced equidistantly: (a) t=O.O0175, 
(b) t=0.00425, (c) t=0.00550, (d) t=0.01200 
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Figure5 Centerline profiles for R a = 3 x l O  9, Ra,=lO 9, )~=3, 
/-///-=0.5: (a) temperature, (b) concentration, (e) density 

the mixed layer height increases. Small cells have merged to 
form larger cells of stronger intensity. The pattern of cell number 
reduction continues (Figures 2(c)-2(d)) until at t =  1.2 × 10 -2 
only four major cells remain. Although the flow pattern is 
strongly two-dimensional, note that the resulting temperature 
and concentration fields depend mainly on the vertical direction. 

Figures 5(a), 5(b), and 5(c) show the centerline temperature, 
concentration, and density profiles at various times. Com- 
parable profiles were predicted at other horizontal locations. 
All temperature profiles feature a uniform temperature in the 
mixed layer (except at the very bottom where a thin thermal 
boundary layer exists according to the constant heat flux 
boundary condition) and exhibit a pure conduction-like be- 
havior in the region above. Another interesting observation 
from comparing the temperature profiles at various times 
between t=2.5  x 10 -3 and t = l . 5 x  10 - 2  is that the thermal 
"boundary layer" front between the bottom and the top 
isothermal regions thickens with time. The species concen- 
tration profiles in Figure 5(b) exhibit a behavior similar to the 
temperature profiles. The bottom well-mixed region is at a 
uniform concentration. While this region grows, its concen- 
tration decreases. The small horizontal lines in Figure 5(a) 
define the extent of the concentration boundary layer on top 
of the well-mixed region. It appears that the temperature 
variation inside the concentration boundary layer is approxi- 
mately linear. Above the concentration boundary layer the 
temperature decays exponentially. In addition, Figure 5(a) 
shows that the temperature gradient inside the concentration 
boundary layer does not vary appreciably with time. 

It is important to note that, for the most part, the density 
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Figure6 Bottom wall  temperature for Ra = 3 x 109, Ra = 109, X = 3, 
H/L=O.5: (a) dependence of average temperature on time, (b) 
dependence on horizontal position 

profiles of Figure 5(c) support the claim by Turner 2 that the 
density steps due to temperature and concentration at the top 
of the mixed layer are equal and of opposite sign. At the end 
of the numerical simulation (t=0.015), however, a stable 
density boundary layer appears to develop at the top of the 
mixed region providing the equivalent of a net stable density 
step. 2 

The transient response of the bottom wall temperature is 
shown in Figure 6(a). The mean bottom wall temperature 
increases rapidly at first, exactly as predicted by the pure 
conduction solution shown by the dotted line, until at t ~  10 -3 
when convective flow starts which quenches the bottom surface 
with cooler overlaying fluid entrained from above. After t 

Int. J. Heat and Fluid Flow, Vol. 11, No. 1, March 1990 35 



Transient double diffusion in a stably stratified fluid layer heated from below: M. Kazmierczak and D. Poulikakos 

1.0- 

Ra = 3x10 = I 
Re=" lx10 ° I 
HIE : 0.5 I / j 

_ ~ ~ / - - ~  
O.S- 5t ~ ~ ~ ~  

0.0 ~ i 
0.000 0.005 0.010 0.015 

t 

Figure 7 Growth of mixed layer average height (51) and interfacial 
boundary layer average thickness (~2-~1) for Ra = 3 x 109, Ra,= 109, 
X = 3, H/L = 0.5. Also shown is the distance of the edge of the thermal 
boundary layer from the bottom wall  (E,) 

1.5 x 10-3 when flow is fully established over the entire bottom 
surface, the bottom mean temperature rises again, but this time 
at a much slower rate since energy is being transported away 
from the bottom wall to the well-mixed fluid region above it. 
The fluctuating nature of the bottom wall temperature is a 
direct result of the ever-changing flow structure in the system. 
Figure 6(b) shows the variation of the bottom wall local 
temperature reported at various times. The maxima in the 
temperature variation are found to occur in the regions located 
in between adjacent cells where the flow direction is upwards 
(away from the wall). Similarly, colder fluid from above 
travelling downward (toward the bottom wall) is responsible 
for the appearance of the minima in the temperature distribution. 

The growth of the well-mixed bottom layer and the thickness 
of the interfacial boundary layer separating the bottom well- 
mixed region and the top stagnant region of the system is 
illustrated in Figure 7. The solid line represents the top of the 
well-mixed region (and the bottom of the interfacial boundary 
layer). The dotted line represents the top of the interfacial 
boundary layer. The distance between the two lines is the 
boundary layer thickness. The solid line was calculated by 
checking the concentration of the bottom layer starting from 
the bottom wall and moving upward. The top of the well-mixed 
region was defined as the height at which the species concen- 
tration decreases by 2% relative to its value in the well-mixed 
region. The dotted line was determined by using the same 
criterion starting from the top and determining the point at 
which the concentration deviates by 2% relative to its initial 
value. This procedure was repeated at all g locations. The values 
used to construct the lines shown in Figure 7 were obtained 
after averaging the results at each g location. It is worth noting 
that the dependence of the mixed layer height and the boundary 
layer region on the horizontal position is very weak. Clearly, 
the concentration boundary layer thickens as time increases. 
At early times, such a region practically does not exist. It 
becomes visible after t ~ 5  x 10 -3. Before this time, the bottom 
uniform concentration region and the top linearly stratified 
region are separated by a sharp interface. As time proceeds and 
the interracial boundary layer thickens it is important to note 
that the stabilizing concentration difference across this region 
becomes larger. This fact limits the mixed layer growth rate. 

Also shown with a dashed line in Figure 7 is the distance 
of the edge of the thermal boundary layer from the bottom 
wall. The thermal boundary layer thickens monotonically and 
advances ahead of the concentration boundary layer. It appears, 
therefore, that a region exists on top of the concentration 
boundary layer and inside the thermal boundary layer in which 

the concentration distribution is linear (the initial concentration 
distribution) while the temperature decreases exponentially 
(see also Figure 5(a)). This region thickens as the transient 
phenomenon progresses. 

Having explored in detail the system behavior for a given 
fixed set of parameters, we now shift our attention to study the 
effect of these parameters on the double diffusion phenomenon. 
The first system parameter investigated is the system geometric 
aspect ratio, H/L = i. Referring to Table 1, we see that all 
the parameters for the second simulation performed have the 
same values with the parameters in the first simulation except 
for the aspect ratio which was doubled from H/L=0.5 to 
H/L = 1. Figures 8-10 report a sequence of flow, temperature, 
and species concentration fields respectively. Except for the fact 
that the flow structure contains fewer number of cells, the 
square system (H/L = 1) behaves much the same as the longer 
rectangular system (H/L=0.5).  The temperature (Figure 9) 
and the concentration (Figure 10) fields reveal that a single 
well-mixed layer develops at the bottom wall and grows with 
time. It was found that the resulting concentration and temper- 
ature fields for the square system are the same with those 
predicted for the longer system. The actual comparison is not 
shown here for brevity. Based on the above fact, it is concluded 
that, for systems with H/L < 1, the effect of aspect ratio on the 
double diffusion phenomenon is not important. The overall 
features of these systems are similar to those of infinitely long 
layers. In all subsequent simulations, the system aspect ratio 
was set equal to unity to minimize the required computational 
time. 

The second major system parameter investigated is the 
stability ratio, Z = Ra/Ra~. To determine the effect of increasing 
Z the third simulation listed in Table 1 was performed. The 
value of Z was increased from Z = 3 to Z = 10 by decreasing the 
solutal Rayleigh number from Ra~= 1 x 10 9 to Ras=3 x 10 8 

7 7 -! fO -I0 t 7  

(a) (b) 

(c) (d) 
Figure8 Streamlines for R a = 3 x l O %  Ra ,= lO  9, X=3,  H/L=1 
at characteristic times. Contours are spaced equidistantly: (a) 
t=O.O020, (b) t=O.O040, (c) t=0.0065,  (d) t=O.O080 
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@.=11'5 

(a) (b) 

(c) (d) 
Figure9 Isotherms for R a = 3 x l O  9, Ra,=10 ~, X=3, H/L=1 
at characteristic times. Contours are spaced equidistantly: (a) 
t=O.O020, (b) t=O.0040, (c) t=0.0065,  (d) t=0.O080 

while keeping all other parameters constant. The sequence of 
flow, temperature, and concentration fields for this case is 
reported in Figures 11-13. The impact of increasing X was 
drastic. Although a single convective layer formed below a 
stable diffusion region much like in the previous simulations, 
several differences are apparent. From Figure 11 we see that 
the flow is much stronger and that the convective region 
grows much faster. This more vivid flow, results in significant 
horizontal temperature (Figure 12) and horizontal concentration 
(Figure 13) gradients in the system. In addition, the interface 
boundary layer is no longer horizontal. For  comparison, the 
mean bottom wall temperature is plotted in Figure 14(a) for 
Z=3 and X= 10. Figure 14(b) shows a similar comparison for 
the mixed layer height. Several differences are immediately 
evident. Increasing g increases the rate at which the mixed layer 
grows (Figure 14(b)). This fact is reflected in the mean bottom 
temperature (Figure 14(a)) that departs from the pure conductive 
solution sooner and is maintained at a lower value. Note also 
that the mean mixed layer height is no longer smooth but it 
fluctuates with time, a direct consequence of the flow field 
discussed earlier. 

Next, the effect of decreasing both the thermal Rayleigh 
number (Ra) and the solutal Rayleigh number (Ra~) while 
keeping the stability ratio, the same (Z=3) is examined. The 
mean bottom temperature and the mean mixed layer height for 
the last case in Table 1 (X = 3, Ra = 3 x 108, Ras = 108), is also 
plotted in Figures 14(a) and (b), respectively (solid-dash lines). 
Comparing the two lines for X = 3 in Figure 14(b) we observe 
that the mixed layer height for the simulation with the lower 
values of Ra and Ra~ grows slightly slower and the mixed layer 
is initiated considerably later. This results in a warmer mean 
bottom temperature (Figure 14(a)). 

The flow field development (after the flow initiation stage) 
is qualitatively the same for the two runs with X = 3 in terms 

of cell shape, size, and merging characteristics but the magnitude 
of the flow strength is significantly less for the simulation with 
the lower Rayleigh numbers. Figure 15 shows the flow, temper- 
ature, and concentration fields for the last case in Table 1 
at t=0.01250. Note that the maximum stream function at 
t = 0.01250 is Win., ~ 55 whereas the maximum streamfunction 
in Figure 8 at the same time was Wma x ~ 200. It is then possible 
to slow down the flow by keeping X constant and decreasing 
Ras and Ra simultaneously. 

Before closing this section, it is necessary to put our numerical 
results into proper perspective with respect to the experimental 
findings of Turner 2 and Hupert and Linden. 4 The present 
numerical simulations did not produce multiple mixed layer 
growth like some of the experiments by Turner 2 and by Huppert 
and Linden. 4 It is known that a single well-mixed region exists 
in double diffusion if the magnitude of the bottom wall heat 
flux (Ra) is not very high compared to the stabilizing salt 
gradient (Ra,), i.e., the stability ratio x=Ra/Ra~ is not very 
large.1 ~,13 In our numerical simulation, the stability ratio was 
in the range 3<X<10.  In the experiments of Turner 2 and 
Huppert and Linden, 4 the stability ratios were X = 26 and X = 17 
respectively, thus explaining why they observed multiple layer 
formation and we did not. In this respect, both our numerical 
results and the experiments of Turner 2 and Huppert and 
Linden 4 make sense physically. We chose lower values of X 
deliberately. Since the present paper is one of few existing 
2-D numerical simulations, it focuses on the more manageable 
single cell formation and aims at improving our fundamental 
knowledge on its development and growth. Based on the 
difference stated above, no direct quantitative comparisons 
between our results and those of Turner 2 and Huppert and 
Linden 4 are possible. 

A second major difference between our work and that of 
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Figure 10 Equal concentration lines for R a = 3 x l O  9, Ra=109, 
X=3, H/L=1 at characteristic times. Contours are spaced equi- 
distantly: (a) t=O.0020, (b) t=O.OO40, (c) t=0.0065, (d) t=  0.0080 
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(a) 

o_ _ , 

(b) (c) 

Figure 11 Streamlines for Ra = 3 x 109, Ra, = 
3 x 108, Z = 1 O, H/L = 1 at characteristic times. 
Contours are spaced equidistantly: (a) t =  
0.0020, (b) t=0 .00850,  (c) t=0 .00950  

(a) (b) 

CD 

~ 0  0 

(c) 

Figure 12 Isotherms for R a = 3 x l O  9, Ra,= 
3 x 108, Z = 1 O, H/L = 1 at characteristic times. 
Contours are spaced equidistantly: (a) t =  
0.0020 (b) t=0 .00850,  (e) t=0 .00950  
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Figure 13 Equa lconcent ra t ion l ines fo rRa=3x lOg,  R a + = 3 x l O  8, 
Z=  10, H/L = 1 at characteristic times• Contours are spaced equi- 
distantly: (a) t=O.O020, (b) t=0.00850,  (c) t=0 .00950  

Turner 2 and Huppert and Linden + is the magnitude of Ra and 
Ra~ used in the three studies. The highest Rayleigh numbers in 
our study were Ra = 3 × 10 9 and Ra~ = 1 x 10 9. In the experi- 
ments of Turner, Ra=3  x 1011 and Ra~= 1.2 x 10 l° was used. 
In the experiments of Huppert and Linden + the corresponding 
values were R a = 4 x  1011, Ra~=2.4 × 10 l°. The difference in 
the thermal Rayleigh numbers between our work and that of 
Turner 2 or Huppert and Linden 4 is roughly two orders of 
magnitude. This is why we feel that using a laminar flow model 
is justifiable in our work, even though Turner 2 observed 
turbulence and 3-D effects in his experiments. In addition, our 
values for Ra and Ra, are based on the total height of the layer. 
If, in the calculation of Ra and Ra s, the instantaneous height 
of the "active" well-mixed region is used, the values of the so 
obtained "instantaneous" Ra and Ras will be considerably 
smaller. For example, at the end of the first simulation the 
value of the "instantaneous" thermal Rayleigh number was 
calculated to be R a ~ 7  x 10 8. For the above reasons as well as 
for the fact that a laminar flow model is a good first step toward 
more complex turbulent numerical simulations it is felt that the 
present laminar numerical simulations are appropriate. 

C o n c l u s i o n s  

This study presented a numerical investigation of transient 
two-dimensional double diffusion in a horizontal layer of a 
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Figure 74 Comparing results from three simulations: (a) average 
bottom temperature, (b) average bottom layer height 

liquid solution (such as water and a salt). Initially, the liquid 
solution was motionless, isothermal, and its density decreased 
linearly with distance from the bottom wall. The initial density 
distribution reflects the fact that the species concentration 
decreased linearly with distance from the bottom wall. At t = 0  
a constant heat flux was applied at the bottom wall. 

The results of the investigation provide insight for the 
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(a) (b) (c) 
Figure 15 Predicted contours for Ra=3 x 10 s, Ra,= 108, Z=3, H/L =1 at t=0.01250. Contours are spaced equidistantly: (a) streamlines, 
(b) isotherms, (c) equal concentration lines 

growth and the nature of the flow, the temperature and the 
concentration fields in the system. The flow field is strongly 
two-dimensional and multicellular. As time progresses the 
number of cells decreases; pairs of cells merge to create single 
cells. At early times, all of the flow activity occurs near the 
bot tom wall. The flow region grows with time. The temperature 
and concentration fields of the flow region are largely one- 
dimensional, however, increasing the value of the stability 
parameter,  Z, from Z = 3  to Z = 1 0  initiates significant two- 
dimensional effects on the temperature and the concentration 
fields. This finding has direct implications regarding the range 
of validity of simple one-dimensional models for double diffusion 
in horizontal layers. The geometric aspect ratio of the system 
had very little impact on the phenomenon of interest for the 
parametric domain examined in this study. 
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